Difference between revisions of "Item talk:Q1172"

From Wikibase Personal data
Jump to navigation Jump to search
Line 78: Line 78:
 
Many things:
 
Many things:
 
* intermediate GPS traces
 
* intermediate GPS traces
* logic of the processing
+
* historic GPS traces
 
* log on/log off/available times
 
* log on/log off/available times
* etc
+
* speed/policing of driving
 +
* tags sur tickets
 +
* notifications
 +
* vehicle data
 +
* star rating
 +
* experiment information
 +
* logic of the processing (many "myths"...)
  
 
== Easily replicable ==
 
== Easily replicable ==

Revision as of 10:46, 4 October 2019

Travail de plateformes et gouvernance algorithmique: quels sont les enjeux?

This page: http://tiny.cc/pdio-unimail

Poster

UniMailPlateformes.jpg

Introduction

Starting point

  • Loss of agency in interactions with the platforms
    • individual level: autonomy
    • collective level: sovereignty
  • Data is an essential resource for the platform
    • "operating system for the city" - "système d'exploitation"
    • individual agency: "personal data rights"
    • collective level: "making data open"

Personal data rights

Definition

personal data (Q28): "data about an identified or identifiable individual"

Rights

FairTube

  • guy has a nice slingshot channel
FairtubeCatapult.jpg

FairtubeGameChanger.jpg FairtubePointing.jpg FairtubeJorg.jpg FairtubeUnion.jpg FairtubeChristianeBenner.jpg FairtubeAccess.jpg FairtubeTransparent.jpg FairtubeAccounting.jpg

  • results: "data rights collectively useful"

Uber

London

UberDataTrips.jpeg UberDataSpeed.jpg UberDataEndpoints.jpg UberDataDispatch.jpeg

Geneva

GokhanBozdagPlainpalais.jpg

Passenger data

Uber-POD-detailed-data.jpg Uber-POD-detailed-data-2.jpg

How?

  • make a request: see Uber (Q101)
  • uses Kepler.gl (open source Uber tool!)

Why?

  • "understand my work"
  • information (policing of work, through GPS and accelerometers for instance)
  • data flow tracing for regulation
  • data for labor laws accountability

What is missing?

Frame for addressing the question: model of Uber (simulcast from ConnectedData London)

Many things:

  • intermediate GPS traces
  • historic GPS traces
  • log on/log off/available times
  • speed/policing of driving
  • tags sur tickets
  • notifications
  • vehicle data
  • star rating
  • experiment information
  • logic of the processing (many "myths"...)

Easily replicable

For instance Deliveroo (Q102)

Challenge

UberResponse1.jpeg.jpg UberResponse2.jpeg.jpg

MyData Geneva